# THERMOANALYTICAL EVALUATION OF READILY AVAILABLE REFERENCE POLYMERS Thermoplastics

## A. Riga, D. Young, G. Mlachak and P. Kovach

The Lubrizol Corporation, Wickliffe, OH 44092, USA

## Abstract

A commercial set of polymers has been characterized by TG-DTA, DSC, TMA, FTIR spectroscopy and X-ray diffraction analysis (XRD). Thermal and mechanical stability; as well as the polymer glass transition temperature,  $T_g$ , and melt temperature,  $T_m$ , have been documented. There is a good correlation between measured  $T_g$  and  $T_m$  values and published data. The degree of polymer crystallinity for polyethylene has been verified by XRD. The credibility and stability of these reference polymers is based on a comparison of their thermal properties, over a wide range of temperatures from two versions of a reference set, published in 1979 (A) and 1994 (B). The thermal properties and crystallinity of these polymers have stood the test of time and are reliable, readily available and consistent.

Keywords: reference polymers

## Introduction

There is an ongoing need in the plastics industries for readily available reference polymers. Appropriate and well characterized polymers are needed as technical society (ASTM) [1-2], academic and industrial references for a variety of applications, such as engineering processing [3] and design of plastics [4], composites [5] and coatings. Property and temperature calibration of thermoanalytical techniques, with an established polymer set, are of utmost importance in presenting reliable data and developing quality assurance protocols [6]. Control charting thermal methods with quality polymers can lead to ISO certification.

The objectives of this study are to: select appropriate and readily available reference polymers for thermal analysis; develop a data base of characteristic thermal properties; determine the precision and accuracy of a thermal measurement based on a number of thermoanalytical methods. The selection of reliable polymers is dependent on the stability of the polymers over a period of time.

The Society of Plastics Engineers sponsors an Educational Resin Kit<sup>®</sup> that meets the stability and the broad polymer base criteria, see Table 1 [7]. The Resin Kit<sup>®</sup> distributed in 1979 contained 43 polymers, while the 1994 version had 50 polymers. There is a wide variety of polystyrenes, olefins and nylons in these kits. A

John Wiley & Sons Limited Chichester

| Resi   | n Kit # | Society of Plastics Engineers Educational Resin Kit |      |  |  |  |  |
|--------|---------|-----------------------------------------------------|------|--|--|--|--|
| A 1979 | B 1994  | Polymer                                             | Code |  |  |  |  |
| 1      | 1       | polystyrene general purpose                         | PS   |  |  |  |  |
| 2      | 2       | polystyrene medium impact                           | PS   |  |  |  |  |
| 3      | 3       | polystyrene high impact                             | PS   |  |  |  |  |
|        | 4       | styrene acrylonitrile                               | SAN  |  |  |  |  |
| 5      | 5       | acrylonitrile-butadiene-styrene                     | ABS  |  |  |  |  |
| 6      | 6       | ABS medium impact                                   |      |  |  |  |  |
| 7      | 7       | ABS high impact                                     |      |  |  |  |  |
| 8      | 8       | styrene butadiene                                   | SBR  |  |  |  |  |
| 9      | 9       | acrylic                                             |      |  |  |  |  |
| 10     | 10      | modified acrylic                                    |      |  |  |  |  |
| 11     | 11      | cellulose acetate                                   | CA   |  |  |  |  |
| 12     | 12      | cellulose acetate butyrate                          | CAB  |  |  |  |  |
| 13     | 13      | cellulose acetate propionate                        | CAP  |  |  |  |  |
| 14     | 14      | nylon (tranparent)                                  |      |  |  |  |  |
| 15     | 15      | nylon 66                                            | Ny66 |  |  |  |  |
| 16     | 16      | nylon 6                                             | Nуб  |  |  |  |  |
| 17     | 17      | thermoplastic polyester                             | PBT  |  |  |  |  |
| 18     | 18      | thermoplastic polyester                             | PETG |  |  |  |  |
| 19     | 19      | phenylene oxide                                     | РО   |  |  |  |  |
| 20     | 20      | polycarbonate                                       | PC   |  |  |  |  |
| 21     | 21      | polysulfone                                         | PS   |  |  |  |  |
| 22     | 22      | polybutylene                                        | PB   |  |  |  |  |
| 23     | 23      | ionomer                                             |      |  |  |  |  |
| 24     | 24      | low density polythylene                             | LDPE |  |  |  |  |
| 25     | 25      | high density polythylene                            | HDPE |  |  |  |  |
| 26     | 26      | polypropylene copolymer                             | EP   |  |  |  |  |
| 27     | 27      | polypropylene                                       | PP   |  |  |  |  |
| 28     | 28      | pol yaryl-ether                                     |      |  |  |  |  |
| 29     | 29      | flexible polyvinyl chloride                         | PVC  |  |  |  |  |
| 30     | 30      | rigid polyvinyl chloride                            | PVC  |  |  |  |  |
| 31     | 31      | acetal resin                                        |      |  |  |  |  |
| 32     | 32      | acetal resin copolymer                              |      |  |  |  |  |
| 33     | 33      | polyphenylene sulfide                               |      |  |  |  |  |
| 34     | 34      | ethylene vinyl acetate                              | EVA  |  |  |  |  |
| 35     | 35      | synthetic elastomer                                 |      |  |  |  |  |
| 36     | 36      | urethane elastomer                                  |      |  |  |  |  |
| 37     | 37      | urethane elastomer                                  |      |  |  |  |  |
|        | 38      | polypropylene/flame retardant                       |      |  |  |  |  |

| Table 1 List of polymers, | Resin Kit (sp | ponsored by th | e Society of I | Plastics Engi | ineers, Inc.) | set A, |
|---------------------------|---------------|----------------|----------------|---------------|---------------|--------|
| 1979 and set B,           | 1994          |                |                |               |               |        |

| Resi   | n Kit # | Society of Plastics Engineers Educational Resin Kit |      |  |  |  |
|--------|---------|-----------------------------------------------------|------|--|--|--|
| A 1979 | B 1994  | Polymer                                             | Code |  |  |  |
| 39     | 39      | polyester elastomer                                 |      |  |  |  |
|        | 40      | ABS+flame retardant                                 |      |  |  |  |
| 41     | 41      | polyallomer ABS-PVC                                 |      |  |  |  |
| 42     | 42      | styrenic terpolymer                                 |      |  |  |  |
| 43     | 43      | polymethyl pentene                                  |      |  |  |  |
|        | 44      | PP+talc                                             |      |  |  |  |
|        | 45      | PP+CaCO <sub>3</sub>                                |      |  |  |  |
|        | 46      | PP+mica                                             |      |  |  |  |
|        | 47      | nylon 66+glass                                      |      |  |  |  |
|        | 48      | thermoplastic rubber                                |      |  |  |  |
|        | 49      | medium polyethylene                                 |      |  |  |  |
|        | 50      | ABS/nylon alloy                                     | MDPE |  |  |  |
| 40     |         | ABS-PVC alloy                                       |      |  |  |  |

| Ta | h | le          | 1 | Co | ntin | ned |
|----|---|-------------|---|----|------|-----|
|    | J | <b>I</b> U- |   |    |      | uvu |

number of polymers selected for this study were crystalline, since structural variation can be monitored by XRD.

## Experimental

The Resin Kit<sup>\*</sup> crystalline polymers were examined as plaques in an XRD system [8]. The XRD conditions included examining the reference polymer with copper k-alpha radiation, at room temperature (22°C) after calibrating the system with alpha-quartz.

A robotic TG/DTA system [9] was operated as follows: 10--15 mg of sample, heating rate 20°C min<sup>-1</sup>, nitrogen flow rate at 100 cc min<sup>-1</sup> and the evaluation of the calibrant, calcium oxalate hydrate and ASTM temperature calibration E1582 [10].

The TMA [9] experimental conditions were: 2–5 mg sample, 2–4 mm in height, heating rate 5°C min<sup>-1</sup> in a nitrogen atmosphere, gas flow rate 100 cc min<sup>-1</sup> and an ASTM temperature calibration E1363 [11].

The DSC [12] method used 5–15 mg sample, heating rate 5°C min<sup>-1</sup> in a nitrogen atmosphere, gas flow rate 50 cc min<sup>-1</sup> and heat flow calibration employing ASTM E794 [11].

A piece of selected polymers from set A and B were pressed at 500 to 3500 pounds over four hours. The approximate thickness of the pressed polymers are 0.5 mm. Infrared spectra of the pressed polymers were collected with a FTIR spectrometer [13]. Each sample was scanned 200 times at a 4 cm<sup>-1</sup> resolution. A standard polystyrene infrared curve was used to calibrate the FTIR response.

## **Results and discussion**

The polymers in the two resin kits, set A, 1979 and set B, 1994 are in most cases, from the same material [7]. Therefore, comparing set A and B is a way of evaluating the specific resin kit polymer stored for fifteen years at or near room temperature under laboratory conditions. All of the XRD, FTIR and thermal data was collected in 1996, some DSC data was reported in 1980 [14].

The percent standard deviation, std.dev. %, in all of the TG tables was based on all trials for the cited polymer. This statistical value was used to ascertain the overall variation between sets A and B.

### Polyethylenes and polypropylenes

The structural stability of the olefins, polyethylene (PE) and polypropylene (PP) was tested by examining the XRD structure, Table 2. The XRD% crystallinity varied from 96% for high density polyethylene (HDPE) to 40% for ethylene vinyl acetate copolymer (EVA). There was less than 4% relative change for three of the four polyethylenes studied. Medium density polyethylene (MDPE) was not available in set A.

| Dolumon            | DV# | Peak  | area  | XRD             | set A/B    |  |  |  |  |
|--------------------|-----|-------|-------|-----------------|------------|--|--|--|--|
| Polymer            | NN# | set A | set B | % crystallinity | relative % |  |  |  |  |
|                    |     | d=4   | .15 Å |                 |            |  |  |  |  |
| HDPE               | 25  | 27100 | 28100 | 96              | 96         |  |  |  |  |
| MDPE               | 49  | na    | 23100 | 82              | na         |  |  |  |  |
| LDPE               | 24  | 17300 | 17800 | 64              | 96         |  |  |  |  |
| EVA                | 34  | 11100 | 11300 | 40              | 98         |  |  |  |  |
|                    |     | d=3   | .91 Å |                 |            |  |  |  |  |
| Acetal             | 31  | 22100 | 23000 |                 | 96         |  |  |  |  |
| Acetal copolymer   | 32  | 23200 | 25100 |                 | 92         |  |  |  |  |
| d=4.33+4.14+3.84 Å |     |       |       |                 |            |  |  |  |  |
| nylon 6            | 16  | 21900 | 23700 |                 | 92         |  |  |  |  |
| nylon 66           | 15  | 21600 | 23800 |                 | 91         |  |  |  |  |
| nylon 66+glass     | 47  | na    | 5710  |                 | na         |  |  |  |  |

#### Table 2 Characterization of crystalline polymers by XRD\*

RK# - Resin Kit#, kit sponsored by the Society of Plastics Engineers

Peak area - counts/sec/degree 20

- all data collected in 1996

Set A – Resin Kit, 1979

Set B - Resin Kit, 1994

*d* – interplanar distance, major diffraction peak(s) in Å

na – not available.

The FTIR curves of low density polyethylene and homopolymer polypropylene from set A and B were identical, that is, there was no sign of polymer aging, Figs 1 and 2.



Fig. 1 FTIR of low density polyethylene, #24, set A and set B



Fig. 2 FTIR of polypropylene homopolymer, #27, set A and set B

The interplanar distances,  $d \dot{A}$ , for polypropylene from 3.15 to 6.39  $\dot{A}$  were identical for set A and set B (Table 2). The XRD structures of PE and PP did not vary from set A to set B, a 15-year period, which is supported by the FTIR data.

The TG decomposition temperatures, as measured by the extrapolated onset temperatures,  $T_{oe}$ , for PE and PP had less than a 2% standard deviation, Table 3. The repeatability of HDPE set A and set B was excellent, however, the sets did differ by as much as 17°C with an overall 1.87% standard deviation.

|                                                |     |       | TC               | <b>G</b> *                    | Std. |
|------------------------------------------------|-----|-------|------------------|-------------------------------|------|
| Polymer                                        | RK# |       | set A            | set B                         | Dev. |
|                                                |     | trial | $T_{\rm oe}$ /°C | $T_{\rm oe}$ / <sup>o</sup> C | %    |
| 1 Polyethylene – low density                   | 24  | 1     | 459              | 454                           | 0.68 |
| 2                                              |     | 2     | 457              | 452                           |      |
| 3 Polyethylene – high density                  | 25  | 1     | 475              | 458                           | 1.87 |
| 4                                              |     | 2     | 473              | 460                           |      |
| 5 Polypropylene – copolymer                    | 26  | 1     | 447              | 447                           | 0.19 |
| 6                                              |     | 2     | 449              | 448                           |      |
| 7                                              |     | 3     | 448              | 449                           |      |
| 8 Polyethylene – homopolymer                   | 27  | 1     | 432              | 429                           | 0.32 |
| 9                                              |     | 2     | 429              | 430                           |      |
| 10 Polystyrene – general purpose               | 1   | 1     | 403              | 408                           | 0.59 |
| .11                                            |     | 2     | 404              | 407                           |      |
| 12 Polystyrene – medium impact                 | 2   | 1     | na               | 421                           | 0.00 |
| 13                                             |     | 2     | na               | 421                           |      |
| 14 Polystyrene – high impact                   | 3   | 1     | 420              | 422                           | 0.31 |
| 15                                             |     | 2     | 421              | 423                           |      |
| 16 Styrene acrylonitrile - copolymer           | 4   | 1     | 403              | 403                           | 0.12 |
| 17                                             |     | 2     | 403              | 404                           |      |
| 18 Acrylonitrile-butadiene-styrene-transparent | 5   | 1     | 399              | 399                           | 0.24 |
| 19                                             |     | 2     | 400              | 401                           |      |
| 20 Acrylonitrile-butadiene-styrene-med. impact | 6   | 1     | 410              | 412                           | 0.32 |
| 21                                             |     | 2     | 409              | 411                           |      |
| 22 Acrylonitrile-butadiene-styrene-high impact | 7   | 1     | 409              | 413                           | 0.44 |
| 23                                             |     | 2     | 410              | 412                           |      |
| 24 Styrene butadiene – copolymer               | 8   | 1     | 424              | 424                           | 0.22 |
| 25                                             |     | 2     | 426              | 425                           |      |
| RK# – Resin kit#                               |     |       |                  |                               |      |

Table 3 Polymer decomposition of polyethylene, polypropylene and styrene polymers by TG

RK# – Resin kit# TG\* – all data collected in 1996 Set A – Resin Kit, SPE, 1979 Set B – Resin Kit, SPE, 1994 T<sub>oe</sub> – extrapolated onset temperature, <sup>o</sup>C.

The melt temperatures,  $T_{\rm m}$ , of the polyethylenes are summarized in Table 5. There is a good correlation between various thermal methods that can determine the  $T_{\rm m}$ , that is, the extrapolated onset temperature by DSC [14], peak temperature by DTA and extrapolated onset temperature by TMA. The coefficient of expansion, COE, below the  $T_{\rm m}$  is also recorded in Table 5.

|                              |     | T     | Std.         |                           |      |
|------------------------------|-----|-------|--------------|---------------------------|------|
| Polymer                      | RK# |       | set A        | set B                     | Dev. |
|                              |     | trial | $T_{oe}$ /°C | $T_{oe}$ / <sup>o</sup> C | %    |
| 1 Acetal resin - homopolymer | 31  | 1     |              | 359                       | 0.42 |
| 2                            |     | 2     |              | 356                       |      |
| 3                            |     | 3     |              | 357                       |      |
| 4 Acetal resin – copolymer   | 32  | 1     |              | 377                       | 0.26 |
| 5                            |     | 2     |              | 378                       |      |
| 6                            |     | 3     |              | 379                       |      |
| 7 Nylon – transparent        | 14  | 1     | 454          | 455                       | 0.27 |
| 8                            |     | 2     | 452          | 453                       |      |
| 9                            |     | 3     | 454          | 452                       |      |
| 10 Nylon – type 66           | 15  | 1     | 419          | 412                       | 0.68 |
| 11                           |     | 2     | 412          | 414                       |      |
| 12                           |     | 3     | 417          | 416                       |      |
| 13 Nylon – type 6            | 16  | 1     | 432          | 429                       | 0.32 |
| 14                           |     | 2     | 429          | 430                       |      |
| 15                           |     | 3     | 431          | 432                       |      |

| Table 4 | Polymer | decomposition | of acetal | and r | nylon p | olymers l | bv ' | TG |
|---------|---------|---------------|-----------|-------|---------|-----------|------|----|
|---------|---------|---------------|-----------|-------|---------|-----------|------|----|

| TG*- all data collected in 1996Set A- Resin Kit, SPE, 1979Set B- Resin Kit, SPE, 1994 $T_{oe}$ - extrapolated onset temperature, °C. | RK#             | – Resin kit#                          |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|
| Set A – Resin Kit, SPE, 1979<br>Set B – Resin Kit, SPE, 1994<br>$T_{oe}$ – extrapolated onset temperature, °C.                       | TG*             | - all data collected in 1996          |
| Set B – Resin Kit, SPE, 1994<br>$T_{oe}$ – extrapolated onset temperature, <sup>o</sup> C.                                           | Set A           | – Resin Kit, SPE, 1979                |
| $T_{oe}$ – extrapolated onset temperature, <sup>o</sup> C.                                                                           | Set B           | – Resin Kit, SPE, 1994                |
|                                                                                                                                      | T <sub>oe</sub> | - extrapolated onset temperature, °C. |

The melt temperatures of polypropylenes, homopolymer, copolymer and with fillers is given in Table 5. There is a good correlation between the DSC (set A) and DTA (set B)  $T_{\rm m}$  values. The TMA  $T_{\rm m}$  values for the homopolymer and copolymer were typically higher than the DTA values. The DTA method is sensing the polymer melt temperature prior to the low stress TMA mechanical polymer melt temperature. An alternate interpretation is that the DTA heating rate of 20°C min<sup>-1</sup> and the TMA 5°C min<sup>-1</sup> is influencing the measured values. The PP filled polymers had similar DTA and TMA  $T_{\rm m}$  values.

## **Polystyrenes**

The FTIR structures of 'high impact' polystyrene (impact properties are cited in the Resin Kit<sup>®</sup> company literature [7]) from set A and B were identical, Fig. 3. There were no additional IR peaks for the two polystyrenes. The polystyrenes in the Resin Kit<sup>®</sup> are not crystalline.

The TG of styrene and styrene co- or ter-polymers (styrene acrylonitrile copolymer), SAN and acrylonitrile butadiene styrene terpolymer, ABS, are presented in

|                       |            | Transition temperature/°C |                                 |         |                                  |                                  |     |
|-----------------------|------------|---------------------------|---------------------------------|---------|----------------------------------|----------------------------------|-----|
|                       |            | DSC                       | DTA                             |         | TN                               | ИA                               |     |
| Polymer               | RK#        | Set A                     |                                 |         | Set B                            |                                  |     |
|                       |            | $T_{\rm m}, T_{\rm oe}$   | T <sub>m</sub> , T <sub>p</sub> | Tg, Toe | T <sub>t</sub> , T <sub>oe</sub> | T <sub>m</sub> , T <sub>oe</sub> | COE |
| 1 HDPE                | 25         | 121                       | 123                             |         |                                  | 127                              | 120 |
| 2 MDPE                | 49         | na                        | 121                             |         |                                  | 126                              | 115 |
| 3 LDPE                | 24         | 91                        | 93                              |         |                                  | 99                               | 136 |
| 4 EVA                 | 34         | 84                        | 88                              |         |                                  | 87                               | 93  |
| 5 PP                  | 27         | 145                       | 147                             |         |                                  | 154                              |     |
| 6 PP copolymer        | 26         | 133                       | 137                             |         |                                  | 147                              |     |
| 7 PP+flame retardant  | 38         | na                        | 151                             |         |                                  | 153                              |     |
| 8 PP+talc             | 44         | na                        | 152                             |         |                                  | 154                              |     |
| 9 PP+calcite          | 45         | na                        | 153                             |         |                                  | 154                              |     |
| 10 PP+mica            | 46         | na                        | 151                             |         |                                  | 153                              |     |
| 11 PS-general purpose | 1          |                           |                                 | 90      | 136                              |                                  | 54  |
| 12 PS-medium impact   | 2          |                           |                                 | 90      | 140                              |                                  | 56  |
| 13 PS-high impact     | 3          |                           |                                 | 84      | 140                              |                                  | 57  |
| 14 ABS-medium impact  | 6          |                           |                                 | 96      | 142                              |                                  | 55  |
| 15 ABS-high impact    | 7          |                           |                                 | 92      | 141                              |                                  | 52  |
| 16 SAN-copolymer      | 4          |                           |                                 | 98      | 144                              |                                  | 53  |
| 17 SB-copolymer       | 8          |                           |                                 | 68      | 111                              |                                  | 103 |
| 18 Acetal             | 31         |                           |                                 | 42      |                                  |                                  | 91  |
| 19 Acetal-copolymer   | 32         |                           |                                 | 65      |                                  |                                  | 80  |
| 20 Acetal-copolymer   | 32         |                           |                                 | 64      |                                  |                                  | 78  |
| 21 Nylon 6            | 16         |                           |                                 | 51      |                                  |                                  | 34  |
| 22 Nylon 66           | 15         |                           |                                 | 44      |                                  |                                  | 30  |
| 23 Nylon 66+glass     | 47         |                           |                                 | 40      |                                  | • ···                            | 13  |
| * all data og         | llacted in | 1006                      |                                 |         |                                  |                                  |     |

### Table 5 Characterization of polymers by DSC, DTA and TMA\*

- all data collected in 1996

RK# - Resin Kit sponsored by the Society of Plastics Engineers, Inc.

| Set | Α | _ | Resin | Kit, | 1979 |
|-----|---|---|-------|------|------|
|-----|---|---|-------|------|------|

- Set B - Resin Kit, 1994
- glass transition temperature,  $^{\circ}C$  melting temperature,  $^{\circ}C$
- $T_{g}$   $T_{m}$   $T_{t}$ COE
  - transition temperature, marked change in CEO, °C
- coefficent of linear expansion (mm/mm/°C)
- extrapolated onset temperature, °C
- T<sub>oe</sub> T<sub>p</sub> na - peak temperature, °C
- not available.



Fig. 3 FTIR of high impact polystyrene, #4, set A and set B



Fig. 4 FTIR of nylon 66, #16, set A and set B

Table 3. The relative overall % standard deviation for these polymers was less than 1 % for sets A and B. Three of the eight styrene polymers had  $T_{oe}$  values from 399 to 408 °C, two polymers from 409 to 413 °C and three polymers from 420 to 425 °C. High impact PS and the SB copolymer were the most thermally stable.

The 'high impact' polystyrene (PS) and styrene butadiene (SB) copolymer had the lowest TMA  $T_g$ , Table 5, 84 and 68°C, respectively. The other polystyrenes had  $T_g$  values from 90 to 98°C. The COE values were essentially the same, with the SB copolymer the exception. A transition temperature,  $T_t$ , was noted in all the styrene polymers at 136 to 144°C. The SB copolymer was again the exception with a  $T_t$  of 111°C.

### Acetal polymers

The acetal homopolymer and copolymer XRD structure varied by less than 8% for set A and B, Table 2. The TG decomposition temperatures had less than 0.5% standard deviation for set B polymers, Table 4. The acetal copolymer  $T_g$  and COE values were repeatable, Table 5.

## Polyamides: Nylons

The XRD structure of nylon 6 and 66 varied slightly from set A to set B (Table 2). The variation was 8-9% for the aged period. The addition of 33% w glass to nylon 66 (67% w) reduced the peak area (relative crystallinity) to 24% of the pure nylon 66. The addition of the glass has diminished the crystalline content in Nylon 66.

The FTIR structures of nylon 66 from set A and B were identical (Fig. 4). TG of the nylons is summarized in Table 4. The overall % standard deviation was less than 1% for these three nylons. Again, this implies marked room temperature stability of the nylons over the 15-year period, 1979 to 1994.

The TMA of nylon 6, 66 and 66 with glass are cited in Table 5. The glass filler significantly lowered the coefficient of linear expansion, COE.

## Conclusions

The SPE educational Resin Kit<sup>®</sup> is a viable source of reference polymers. The more recent kit has 50 polymers that are readily available at a low cost per polymer.

The crystalline polymers, olefins, acetals and nylons have been characterized by XRD and the relative percent crystallinity has varied at < 10% over the 15-year period from 1979 (set A) to 1994 (set B). The FTIR curves of a styrene polymer, a polyethylene, a polypropylene and a nylon confirm their storage stability from set A to set B.

More than half of the available polymers (set B) have been characterized by TG. Decomposition temperatures varied by less than 1% standard deviation, or typically  $< 5^{\circ}$ C at 400°C. DSC (set A, 1980) and DTA (set B, 1996) polymer melt temperatures were in good agreement.

A number of polymers evaluated in this study by thermoanalytical and structural methods are recommended as reference or standard polymers: polyethylenes, polypropylenes, polystyrenes, nylons and acetals.

## References

- 1 ASTM Committee E37.02, Thermal Methods Standard Reference Materials, ASTM Directory, 1993, p. 109.
- 2 ASTM Committee D20.94.02, Plastics-Standardization of Test Specimens, D20.30, Thermal Properties, 1993, p. 83.
- 3 A. D. Murray, Engineering Plastics, ASM International, 2 (1988) 277.
- 4 J. H. Crate, Engineering Plastics, ASM International, 2 (1988) 651.

- 5 J. M. Margolis, Engineering Plastics, ASM International, 2 (1988) 97.
- 6 A. Riga, Am. Chem. Soc., Educational Course, (1992-1995) 1-472.
- 7 R. Lebeaux, The Resinkit<sup>®</sup>, 1112 River St., Woonsocket, RI 02895.
- 8 Phillips Electronic Instruments Co., X-Ray Diffraction X-Pert System, Mahwah, NJ 07430.
- 9 TG/DTA Robotic System and TMA SS, Haake Seiko Instruments, Washingtonville, NY 10992.
- 10 Annual Book of ASTM Standards, General Methods and Instrumentation, 14.02. E1582-93 1995, p. 933.
- 11 Annual Book of ASTM Standards, General Methods and Instrumentation, 14.02, E 1363-95, 855 and E794-95 1996, p. 531.
- 12 DSC 2000, TA Instruments, New Castle, DE 19720.
- 13 Mattson FTIR Spectrometer.
- 14 A. T. Riga and E. A. Collins, Engineering Plastics, ASM International, 2 (1988) 824.